Self-invariant 1-Factorizations of Complete Graphs and Finite Bol Loops of Exponent 2∗

نویسندگان

  • B. Baumeister
  • A. Stein
چکیده

Let Ω be a complete graph on an even number n = 2m of vertices V = V(Ω) = {ω1, . . . , ωn} and assume that K = {k1, . . . , kn−1} is a 1-factorization of Ω. Identify every k ∈ K with the fixed point free involution of Sym(V) which interchanges the ends of every edge in k and set GK = 〈K〉. Then K is said to be self-invariant if Kk = K for all k ∈ K. Heiss [Hei] studied self-invariant 1-factorizations and conjectured

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Finite Simple Bol Loops of Exponent 2

In this paper we give an infinite class of finite simple right Bol loops of exponent 2. The right multiplication group of these loops is an extension of an elementary Abelian 2-group by S5. The construction uses the description of the structure of such loops given by M. Aschbacher (2005). These results answer some questions of M. Aschbacher.

متن کامل

A ug 2 00 9 Commuting graphs of odd prime order elements in simple groups ∗

We study the commuting graph on elements of odd prime order in finite simple groups. The results are used in a forthcoming paper describing the structure of Bruck loops and Bol loops of exponent 2.

متن کامل

Se p 20 07 A CLASS OF FINITE SIMPLE BOL LOOPS OF EXPONENT 2

In this paper we give an infinite class of finite simple right Bol loops of exponent 2. The right multiplication group of these loops is an extension of an elementary Abelian 2-group by S5. The construction uses the description of the structure of such loops given by M. Aschbacher [3]. These results answer some questions of M. Aschbacher.

متن کامل

Group Invariants of Certain Burn Loop Classes

To any loop (L, ·), one can associate several groups, for example its multiplication groups Gleft(L) and Gright(L) and M(L) = 〈Gleft(L), Gright(L)〉, the groups of (left or right) pseudo-automorphisms, group of automorphisms, or the group of collineations of the associated 3-net. Groups, which are isotope invariants are of special interest. For example, the groups Gleft(L), Gright(L) and M(L) ar...

متن کامل

On classifying finite edge colored graphs with two transitive automorphism groups

This paper classifies all finite edge colored graphs with doubly transitive automorphism groups. This result generalizes the classification of doubly transitive balanced incomplete block designs with 1 and doubly transitive one-factorizations of complete graphs. It also provides a classification of all doubly transitive symmetric association schemes. The classification of finite simple groups i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008